The Modification of Magneto Impedance Effect with N Number Layer of Multilayers Structure [NiFe/Cu/NiFe]N/Cu/[NiFe/Cu/NiFe]N


  • Pratiwi Kusumawardhani Universitas Sebelas Maret
  • Restu Handayani Universitas Sebelas Maret
  • Yusri Yusri Universitas Sebelas Maret
  • Utari Utari Universitas Sebelas Maret
  • Nuryani Nuryani Universitas Sebelas Maret
  • Ismail Ismail Polytechnic Institute of Nuclear Technology
  • Budi Purnama Universitas Sebelas Maret



Magneto-impedance, Low frequency, Electro-deposition, Multilayer


The effect of N number of layers [NiFe/Cu/NiFe]N/Cu/[NiFe/Cu/NiFe]N on the Magneto Impedance (MI) ratio has been investigated. The multilayer structure was made using the electrodeposition method on a meander-patterned Cu PCB substrate. Measurement of the MI ratio is performed at a low frequency of 100 kHz. The MI ratio increased from 1.34% for N = 1 to 1.86% for N = 3. This is because the increase in the number of N increases the permeability of the sample, thereby increasing the MI ratio.


N. A. Buznikov and G. V. Kurlyandskaya, “A Model for the Magnetoimpedance Effect in Non-Symmetric Nanostructured Multilayered Films with Ferrogel Coverings,” Sensors, vol. 21, no. 15, p. 5151, July 2021, doi: 10.3390/s21155151.

M. Knobel and K. R. Pirota, “Giant magnetoimpedance: concepts and recent progress,” J. Magn. Magn. Mater., vol. 242–245, pp. 33–40, April 2002, doi: 10.1016/S0304-8853(01)01180-5.

H. Yokoyama, K. Kusunoki, Y. Hayashi, S. Hashi, and K. Ishiyama, “Magneto-impedance properties of thin-film type sensors using CoNbZr/SiO2 multilayer films,” J. Magn. Magn. Mater., vol. 478, pp. 38–42, May 2019, doi: 10.1016/j.jmmm.2019.01.066.

H. Kikuchi, M. Tanii, and T. Umezaki, “Effects of parallel and meander configuration on thin-film magnetoimpedance element,” AIP Adv., vol. 10, no. 1, p. 015334, Jan. 2020, doi: 10.1063/1.5130410.

O. Thiabgoh, T. Eggers, S. D. Jiang, J. F. Sun, and M. H. Phan, “Condition Monitoring and Failure Prediction of Gear Rotation Using a Contactless RF Magnetic Sensor,” J. Electron. Mater., vol. 48, no. 6, pp. 4000–4006, Jun. 2019, doi: 10.1007/s11664-019-07161-2.

S. shameem, V. Prasad, S. T. Swamy, S. B. Thotakura, A. Puli, and P. K. Ravuri, “Design and Analysis of MEMS based GMI Sensor for Detection of Gastric Cancer Cells,” in 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), Dec. 2018, pp. 131–135, doi: 10.1109/ICSSIT.2018.8748635.

M.-H. Phan and H.-X. Peng, “Giant magnetoimpedance materials: Fundamentals and applications,” Prog. Mater. Sci., vol. 53, no. 2, pp. 323–420, Feb. 2008, doi: 10.1016/j.pmatsci.2007.05.003.

D. P. Makhnovskiy and L. V. Panina, “Size effect on magneto-impedance in layered films,” Sensors Actuators A Phys., vol. 81, no. 1–3, pp. 91–94, Apr. 2000, doi: 10.1016/S0924-4247(99)00093-X.

G. V. Kurlyandskaya, J. L. Muñoz, J. M. Barandiarán, A. Garcı́a-Arribas, A. V. Svalov, and V. O. Vas’kovskiy, “Magnetoimpedance of sandwiched films: experimental results and numerical calculations,” J. Magn. Magn. Mater., vol. 242–245, pp. 291–293, Apr. 2002, doi: 10.1016/S0304-8853(01)01147-7.

W. E. Prastyo, “Aplikasi Magnetoimpedansi Multilapisan [Ni80fe20/Cu]N Hasil Elektrodeposisi Sebagai Biosensor,” Universitas Sebelas Maret, 2018.

A. García-Arribas, “The Performance of the Magneto-Impedance Effect for the Detection of Superparamagnetic Particles,” Sensors, vol. 20, no. 7, p. 1961, Mar. 2020, doi: 10.3390/s20071961.

M. Amiruddin and B. Purnama, “Fenomena Magneto-impedansi untuk Frekuensi Rendah pada Multilayer [Ni80Fe20/Cu]N Hasil Elektro-deposisi,” J. Fis. dan Apl., vol. 10, no. 2, pp. 95–98, Jun. 2014, doi: 10.12962/j24604682.v10i2.813.