Effect of La-Substituted Barium Hexaferrite on the Structural Characteristics and Magnetic Properties for Microwave Absorbing Material


  • Yana Taryana Indonesian Institute of Sciences
  • Yosef Sarwanto Center for Science and Technology of Advanced Materials
  • Wisnu Ari Adi Center for Science and Technology of Advanced Materials




Barium hexaferrite, Ba1-xLaxFe12O19, La-substitution, Structural characteristics, Magnetic properties, Microwave absorbing material


Ba1-xLaxFe12O19 with ion substitution La3+ (x = 0 – 0.7) has been produced via the mechanical milling technique of the solid reaction method. Considering that Ba1-xLaxFe12O19 is expected to be used as a microwave absorbent, it is necessary to characterize its structural and magnetic features. The refinement results of the X-ray diffraction (XRD) data show that a single-phase hexagonal structure (space group P63/mmc) is obtained for x = 0 and x  = 1, while for the composition of x > 0.1 is multiphase. The lattice parameters and crystal volume decreased, whereas the lattice strain was found to advance with increasing La substitution in the sample. For x = 0.1, the crystallite size is constant while the lattice strain increases. Employing a scanning electron microscope (SEM), the observation of particle morphology shows that the single-phase (x = 0 and x  = 0.1) has a comparably unvarying particle size circulation, while for x > 0.1, different particle shapes and sizes are found. The saturation magnetization raises while the coercivity field reduces due to the substitution of La for x = 0.1. Furthermore, for x > 0.1, the saturation magnetization decreases while the coercivity field increases.


X. Shen, F. Song, J. Xiang, M. Liu, Y. Zhu, and Y. Wang, “Shape anisotropy, exchangeâ€coupling interaction and microwave absorption of hard/soft nanocomposite ferrite microfibers,†J. Am. Ceram. Soc., vol. 95, no. 12, pp. 3863–3870, 2012.

B. F. Phelps, F. Liorzou, and D. L. Atherton, “Inclusive model of ferromagnetic hysteresis,†IEEE Trans. Magn., vol. 38, no. 2, pp. 1326–1332, 2002.

R. C. Pullar, “Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics,†Prog. Mater. Sci., vol. 57, no. 7, pp. 1191–1334, 2012.

A. Bahadur et al., “Morphological and magnetic properties of BaFe12O19 nanoferrite: A promising microwave absorbing material,†Ceram. Int., vol. 43, no. 9, pp. 7346–7350, 2017.

Z. P. Wu et al., “Electromagnetic interference shielding of carbon nanotube macrofilms,†Scr. Mater., vol. 64, no. 9, pp. 809–812, 2011.

A. Kumar, S. S. Yadava, P. Gautam, A. Khare, and K. D. Mandal, “Magnetic and dielectric studies of barium hexaferrite (BaFe12O19) ceramic synthesized by chemical route,†J. Electroceramics, vol. 42, no. 1, pp. 47–56, 2019.

V. C. Chavan, S. E. Shirsath, M. L. Mane, R. H. Kadam, and S. S. More, “Transformation of hexagonal to mixed spinel crystal structure and magnetic properties of Co2+ substituted BaFe12O19,†J. Magn. Magn. Mater., vol. 398, pp. 32–37, 2016.

W. S. Castro, R. R. Corrêa, P. I. Paulim Filho, J. M. R. Mercury, and A. A. Cabral, “Dielectric and magnetic characterization of barium hexaferrite ceramics,†Ceram. Int., vol. 41, no. 1, pp. 241–246, 2015.

J. R. Liu, M. Itoh, T. Horikawa, M. Itakura, N. Kuwano, and K. Machida, “Complex permittivity, permeability and electromagnetic wave absorption of α-Fe/C (amorphous) and Fe2B/C (amorphous) nanocomposites,†J. Phys. D. Appl. Phys., vol. 37, no. 19, p. 2737, 2004.

W. A. Adi and A. Manaf Ridwan, “Absorption characteristics of the electromagnetic wave and magnetic properties of the La0.8Ba0.2FexMn½(1-x)Ti½(1-x)O3 (x = 0.1-0.8) Perovskite system,†Int. J. Technol., vol. 5, pp. 887–897, 2017.

F. M. M. Pereira et al., “Structural and dielectric spectroscopy studies of the M-type barium strontium hexaferrite alloys (BaxSr1− xFe12O19),†J. Mater. Sci. Mater. Electron., vol. 19, no. 7, pp. 627–638, 2008.

M. B. Kaynar, Ş. Özcan, and S. I. Shah, “Synthesis and magnetic properties of nanocrystalline BaFe12O19,†Ceram. Int., vol. 41, no. 9, pp. 11257–11263, 2015.

R. E. El Shater, E. H. El-Ghazzawy, and M. K. El-Nimr, “Study of the sintering temperature and the sintering time period effects on the structural and magnetic properties of M-type hexaferrite BaFe12O19,†J. Alloys Compd., vol. 739, pp. 327–334, 2018.

Ü. Özgür, Y. Alivov, and H. Morkoç, “Microwave ferrites, part 1: fundamental properties,†J. Mater. Sci. Mater. Electron., vol. 20, no. 9, pp. 789–834, 2009.

M. N. Ashiq, M. J. Iqbal, M. Najam-ul-Haq, P. H. Gomez, and A. M. Qureshi, “Synthesis, magnetic and dielectric properties of Er–Ni doped Sr-hexaferrite nanomaterials for applications in High density recording media and microwave devices,†J. Magn. Magn. Mater., vol. 324, no. 1, pp. 15–19, 2012.

D. A. Vinnik et al., “Tungsten substituted BaFe12O19 single crystal growth and characterization,†Mater. Chem. Phys., vol. 155, pp. 99–103, 2015.

Y. E. Gunanto, E. Jobiliong, and W. A. Adi, “Composition and phase analysis of nanocrystalline BaxSr1-xFe12O19 (x = 1.0; 0.6; and 0.4) by using general structure analysis system,†in AIP Conference Proceedings, 2016, vol. 1719, no. 1, p. 30019.

H. Nikmanesh, S. Hoghoghifard, and B. Hadi-Sichani, “Study of the structural, magnetic, and microwave absorption properties of the simultaneous substitution of several cations in the barium hexaferrite structure,†J. Alloys Compd., vol. 775, pp. 1101–1108, 2019.

H. Sözeri, Z. Mehmedi, H. Kavas, and A. Baykal, “Magnetic and microwave properties of BaFe12O19 substituted with magnetic, non-magnetic and dielectric ions,†Ceram. Int., vol. 41, no. 8, pp. 9602–9609, 2015.

V. Zepf, Rare earth elements: a new approach to the nexus of supply, demand and use: exemplified along the use of neodymium in permanent magnets. Springer Science & Business Media, 2013.

W. A. Adi, S. Wardiyati, and S. H. Dewi, “Nanoneedles of Lanthanum Oxide (La2O3): A Novel Functional Material for Microwave Absorber Material,†in IOP Conference Series: Materials Science and Engineering, 2017, vol. 202, no. 1, p. 12066.

Z. Pang, X. Zhang, B. Ding, D. Bao, and B. Han, “Microstructure and magnetic microstructure of La+ Co doped strontium hexaferrites,†J. Alloys Compd., vol. 492, no. 1–2, pp. 691–694, 2010.

B. H. Toby, “EXPGUI, a graphical user interface for GSAS,†J. Appl. Crystallogr., vol. 34, pp. 210–213, 2001.

M. S. Idris and R. A. M. Osman, “Structure refinement strategy of Li-based complex oxides using GSAS-EXPGUI software package,†in Advanced Materials Research, 2013, vol. 795, pp. 479–482.

L. S. I. Liyanage, S. Kim, Y.-K. Hong, J.-H. Park, S. C. Erwin, and S.-G. Kim, “Theory of magnetic enhancement in strontium hexaferrite through Zn–Sn pair substitution,†J. Magn. Magn. Mater., vol. 348, pp. 75–81, 2013.

S. S. S. Afghahi, M. Jafarian, M. Salehi, and Y. Atassi, “Improvement of the performance of microwave X band absorbers based on pure and doped Ba-hexaferrite,†J. Magn. Magn. Mater., vol. 421, pp. 340–348, 2017.

D. Nath, F. Singh, and R. Das, “X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study,†Mater. Chem. Phys., vol. 239, p. 122021, 2020.