Fabrication and Characterization of Cobalt Ferrite (CoFe2O4) using Sonochemical Method for Promising Hyperthermia Sensor
DOI:
https://doi.org/10.53533/JMA.v2i1.20Keywords:
Cobalt ferrite, Sonochemical method, Hyperthermia sensor, Sintering temperature, NanosphereAbstract
This research aimed to identify the effect of the sintering temperature on the morphology and magnetic properties of CoFe2O4 using sonochemical methods. The prepared CoFe2O4 was characterized by X-ray diffraction (XRD) for phase identification, scanning electron microscope (SEM) for morphology, and magnetic properties using a vibrating sample magnetometer (VSM). Phase identification analysis showed that single phase CoFe2O4 with crystallite size of unsintered and sintered at 500, 600, and 700 oC were 24, 18, 21, and 27 nm, respectively. In the morphological analysis, the sample showed a nanosphere and an agglomerated form. The sample with the largest grain size was 34.11 nm sintered at 700 oC. Saturation magnetization, remanent magnetization, and coercivity field had more substantial values of 75.24 emu/g, 39.39 emu/g, and 0.198 T, respectively.
References
R. A. Bohara, N. D. Throat, N. A. Mulla, and S. H. Pawar, “Surface-Modified Cobalt Ferrite Nanoparticles for Rapid Capture, Detection, and Removal of Pathogens: a Potential Material for Water Purification,” Appl. Biochem. Biotechnol., vol. 182, no. 2, pp. 598–608, Jun. 2017, doi: 10.1007/s12010-016-2347-6.
T. Tatarchuk, M. Liaskovska, V. Kotsyubynsky, and M. Bououdina, “Green synthesis of cobalt ferrite nanoparticles using Cydonia oblonga extract: structural and mössbauer studies,” Mol. Cryst. Liq. Cryst., vol. 672, no. 1, pp. 54–66, Sep. 2018, doi: 10.1080/15421406.2018.1542107.
E. A. Brocchi, D. W. Macedo, G. Solórzono, and F. J. Moura, “Characterisation of synthesised nickel and cobalt nanoscale oxides,” Mater. Charact., vol. 63, pp. 70–76, Jan. 2012, doi: 10.1016/j.matchar.2011.11.002.
J. Parhizkar and M. H. Habibi, “Investigation and Comparison of Cobalt ferrite composite nanoparticles with individual Iron oxide and Cobalt oxide nanoparticles in azo dyes removal,” J. Water Environ. Nanotechnol., vol. 4, no. 1, Jan. 2019, doi: 10.22090/jwent.2019.01.002.
M. Lenglet et al., “Initial stages of cobalt oxidation by FTIR spectroscopy,” J. Phys. IV, vol. 03, no. C9, pp. C9-477-C9-483, Dec. 1993, doi: 10.1051/jp4:1993951.
P. Puspitasari, L. S. Budi, “Physical and Magnetic Properties Comparison of Cobalt Ferrite Nanopowder Using Sol-gel and Sonochemical Methods,” Int. J. Eng., vol. 33, no. 6, Jun. 2020, doi: 10.5829/ije.2020.33.05b.20.
K.-Y. A. Lin, J.-Y. Lin, and P.-Y. Li, “Valorization of aluminum waste as a heterogeneous catalyst for activation of oxone for sulfate radical-based advanced oxidation process,” Sep. Purif. Technol., vol. 185, pp. 120–128, Sep. 2017, doi: 10.1016/j.seppur.2017.05.033.
E. Mazario, N. Menéndez, P. Herrasti, M. Cañete, V. Connord, and J. Carrey, “Magnetic hyperthermia properties of electrosynthesized cobalt ferrite nanoparticles,” J. Phys. Chem. C, vol. 117, no. 21, pp. 11405–11411, 2013, doi: 10.1021/jp4023025.
S. Amiri and H. Shokrollahi, “The role of cobalt ferrite magnetic nanoparticles in medical science,” Mater. Sci. Eng. C, vol. 33, no. 1, pp. 1–8, Jan. 2013, doi: 10.1016/j.msec.2012.09.003.
P. Puspitasari, U. A. Rizkia, S. Sukarni, A. A. Permanasari, A. Taufiq, and A. B. N. R. Putra, “Effects of Various Sintering Conditions on the Structural and Magnetic Properties of Zinc Ferrite (ZnFe2O4),” Mater. Res., vol. 24, no. 1, p. e20200300, 2021, doi: 10.1590/1980-5373-mr-2020-0300.
P. Puspitasari, M. Chairil, S. Sukarni, and N. S. W. Supriyanto, “Physical properties and compressibility of quail eggshell nanopowder with heat treatment temperature variations,” Mater. Res. Express, vol. 8, no. 5, p. 055008, May 2021, doi: 10.1088/2053-1591/ac0266.
B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed. Addison Wesley.
H. A. Gatea, “Impact of Sintering Temperature on Crystallite size and Optical Properties of SnO2 Nanoparticles,” J. Phys. Conf. Ser., vol. 1829, no. 1, p. 012030, Mar. 2021, doi: 10.1088/1742-6596/1829/1/012030.
S. A. Sardjono and P. Puspitasari, “Synthesis and characterization of cobalt oxide nanoparticles using sol-gel method,” 2020, p. 040046. doi: 10.1063/5.0002419.
S. Dang, Z. Wang, W. Jia, Y. Cao, and J. Zhang, “Facile synthesis of rod-like nickel-cobalt oxide nanostructure for supercapacitor with excellent cycling stability,” Mater. Res. Bull., vol. 116, pp. 117–125, Aug. 2019, doi: 10.1016/j.materresbull.2019.04.023.
S. P. John and J. Mathew, “Determination of ferromagnetic, superparamagnetic and paramagnetic components of magnetization and the effect of magnesium substitution on structural, magnetic and hyperfine properties of zinc ferrite nanoparticles,” J. Magn. Magn. Mater., vol. 475, pp. 160–170, Apr. 2019, doi: 10.1016/j.jmmm.2018.11.030.
A. Muhammad, P. Puspitasari, and Andoko, “Properties of soft magnetic material SmCo5 synthesized using low-temperature sol-gel method,” Malang, Indonesia, 2019, p. 050008. doi: 10.1063/1.5115684.
P. Puspitasari, A. A. Permanasari, M. S. Shaharun, and A. Muhammad, “High saturation superparamagnetic properties of low-temperature sintering of nickel oxide,” Tangerang Selatan, Indonesia, 2020, p. 030024. doi: 10.1063/5.0000884.
S. Xu, Y. Ma, B. Geng, X. Sun, and M. Wang, “The remanence ratio in CoFe2O4 nanoparticles with approximate single-domain sizes,” Nanoscale Res. Lett., vol. 11, no. 1, p. 471, Dec. 2016, doi: 10.1186/s11671-016-1691-3.
O. Perales-Pérez and Y. Cedeño-Mattei, “Optimizing Processing Conditions to Produce Cobalt Ferrite Nanoparticles of Desired Size and Magnetic Properties,” Magn. Spinels - Synth. Prop. Appl., 2017, doi: 10.5772/66842.
M. Afshari, A. R. Rouhani Isfahani, S. Hasani, F. Davar, and K. Jahanbani Ardakani, “Effect of apple cider vinegar agent on the microstructure, phase evolution, and magnetic properties of CoFe2O4 magnetic nanoparticles,” Int. J. Appl. Ceram. Technol., vol. 16, no. 4, pp. 1612–1621, 2019, doi: 10.1111/ijac.13224.
S. Xavier, M. K. Jiji, S. Thankachan, and E. M. Mohammed, “Effect of sintering temperature on the structural and electrical properties of cobalt ferrite nanoparticles,” AIP Conf. Proc., vol. 1576, pp. 98–101, 2014, doi: 10.1063/1.4861992.
M. Goodarz Naseri, E. B. Saion, H. Abbastabar Ahangar, A. H. Shaari, and M. Hashim, “Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method,” J. Nanomater., vol. 2010, 2010, doi: 10.1155/2010/907686.
C. Luna, M. del P. Morales, C. J. Serna, and M. V zquez, “Multidomain to single-domain transition for uniform Co80Ni20 nanoparticles,” Nanotechnology, vol. 14, no. 2, pp. 268–272, Feb. 2003, doi: 10.1088/0957-4484/14/2/332.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Poppy Puspitasari, Massigit Ali Nuruddin, Jeefferie Abd. Razak

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Magnetism and its Applications allows the author(s) to hold the copyright without restrictions. Finally, the journal allows the author(s) to retain publishing rights without restrictions.- Authors are allowed to archive their submitted article in an open access repository
- Authors are allowed to archive the final published article in an open access repository with an acknowledgment of its initial publication in this journal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Generic License.