Detail Synthesis Route of Free-Standing Antiferromagnetic La2CuO4 Nanoparticles via Sol-gel Method


  • Suci Winarsih Universitas Padjadjaran
  • Trisna Maulana Universitas Padjadjaran
  • Budhy Kurniawan Universitas Indonesia



Nanoparticles, Sol-gel, Synthesis route, Free-standing antiferromagnetic, La2CuO4


We report the detailed synthesis route of free-standing antiferromagnetic La2CuO4 nanoparticles by the sol-gel method. The precursors were needed to be dissolved in acid solution and continued with heating treatment to make a gel. Some catalyst was needed to control and stabilized the transformation from the solution to gel. Some heating treatments were also conducted to remove the organic component and for the nucleation process to obtain the single-phase sample. Although the sol-gel method required some additional precursors such as acid and catalyst, it has some advantages. It needed a relatively low sintering temperature and short sintering time compare to those at the solid-state reaction. Interestingly, this method can produce a sample with a good distribution of the particle size.


G. L. Nealon, B. Donnio, R. Greget, J. P. Kappler, E. Terazzi, and J. L. Gallani, “Magnetism in gold nanoparticles,†Nanoscale, vol. 4, no. 17, pp. 5244–5258, 2012, doi: 10.1039/c2nr30640a.

M. H. Dehn et al., “Nature of magnetism in thiol-capped gold nanoparticles investigated with Muon spin rotation,†Appl. Phys. Lett., vol. 112, no. 5, 2018, doi: 10.1063/1.5017768.

X. G. Zheng, T. Mori, K. Nishiyama, W. Higemoto, and C. N. Xu, “Dramatic suppression of antiferromagnetic coupling in nanoparticle CuO,†Solid State Commun., vol. 132, pp. 493–496, 2004, doi: 10.1016/j.ssc.2004.06.037.

X. G. Zheng et al., “Finite-size effect on Néel temperature in antiferromagnetic nanoparticles,†Phys. Rev. B - Condens. Matter Mater. Phys., vol. 72, no. 014464, pp. 1–8, 2005, doi: 10.1103/PhysRevB.72.014464.

a. Punnoose, H. Magnone, M. S. Seehra, and J. Bonevich, “Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles,†Phys. Rev. B - Condens. Matter Mater. Phys., vol. 64, no. 174420, pp. 1–8, 2001, doi: 10.1103/PhysRevB.64.174420.

M. S. Seehra and A. Punnoose, “Particle size dependence of exchange-bias and coercivity in CuO nanoparticles,†Solid State Commun., vol. 128, pp. 299–302, 2003, doi: 10.1016/j.ssc.2003.08.029.

R. V. Yusupov, V. V. Kabanov, D. Mihailovic, K. Conder, K. A. Müller, and H. Keller, “Spontaneous ferromagnetic spin ordering at the surface of La2 Cu O4,†Phys. Rev. B, vol. 76, p. 024428, 2007, doi: 10.1103/PhysRevB.76.024428.

R. Kubo, “Electronic Properties of Metallic Fine Particles. I,†J. Phys. Soc. Japan, vol. 17, no. 6, pp. 975–986, 1962, doi: 10.1143/JPSJ.17.975.

S. Bose and P. Ayyub, “A review of finite size effects in quasi-zero dimensional superconductors,†Reports Prog. Phys., vol. 77, p. 116503, 2014, doi: 10.1088/0034-4885/77/11/116503.

A. G. Kolhatkar, A. C. Jamison, D. Litvinov, R. C. Willson, and T. R. Lee, “Tuning the Magnetic Properties of Nanoparticles,†Int. J. Mol. Sci., vol. 14, pp. 15977–16009, 2013, doi: 10.3390/ijms140815977.

A. Gaur and G. . D. Varma, “Sintering temperature effect on electrical transport and magnetoresistance of nanophasic La0.7Sr0.3MnO3,†J. Phys. Condens. Matter, vol. 18, pp. 8837–8846, 2006, doi: 10.1088/0953-8984/18/39/014.

G. Xu, H. Ma, M. Zhong, J. Zhou, Y. Yue, and Z. He, “Influence of pH on characteristics of BaFe12O19 powder prepared by sol-gel auto-combustion,†J. Magn. Magn. Mater., vol. 301, no. 2, pp. 383–388, 2006, doi: 10.1016/j.jmmm.2005.07.014.

S. Winarsih, F. Budiman, H. Tanaka, T. Adachi, and I. Watanabe, “Growth of Free-Standing La2-xSrxCuO4 Nanoparticles,†Mater. Sci. Forum, vol. 966, pp. 357–362, 2019, doi: 10.4028/

S. Winarsih, F. Budiman, H. Tanaka, and T. Adachi, “Variable Range Hopping Resistivity in La2-xSrxCuO4 Nanoparticles Evaluated by Four Point Probe Method,†Key Eng. Mater., vol. 860, pp. 142–147, 2020.